

Oak: The Wood of Choice

- The physical structure of oak makes it an excellent choice for crafting **liquid-tight containers.**
- Oak's chemical complexity offers a multitude of options for creating different flavors while also benefiting a wine's color, mouthfeel and tannin structure.
- Three oak sources for wine barrels:
 - French (Quercus petraea or Quercus sessiliflora)
 - European (Quercus robur)
 - American (Quercus alba)

Physiology of Oak

Oak structure is unique, possessing an **unusually large cell structure that sets it apart** from most hardwoods and plays an important role in wine maturation.

Growth Rings

• There are **two distinct bands of growth every year** – the earlywood and the latewood. The earlywood is more porous, therefore the oak extractives are more accessible.

Radial Rays

• Radial rays run from the center of the tree to the exterior and **act as a semi-permeable barrier to liquid.** They are packed with tannins which benefit wine flavor and mouthfeel. They are also a source of vanillin-rich lignin.

Tyloses

- These balloon-like cells develop during the transformation of sapwood to heartwood. **Tyloses clog the wood pores**, thereby helping to create liquid-tight barrels.
- Also, tyloses are an **easily accessible source of oak extractives.** Their lignin is particularly vanillin-rich, and they contain tannins that migrate from radial rays when the growth rings in the oak convert from sapwood to heartwood.

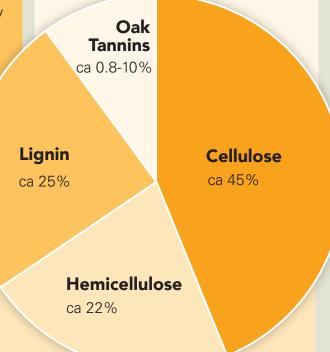
Oak Chemistry

There are four key components of oak called "oak constituents" and they influence wine and spirits in the following ways:

Cellulose

- Minimal direct flavor effect
- Transports extractives

Lignin


- Color
- Increase in blended complexity
- Production of vanilla
- Removal of off-notes
- Subtraction (e.g. vegetal)

Hemicellulose

- Wood sugars ("body")
- Toasty characters
- Carmelization Products
- Color

Oak Tannins

- Removal of off-notes
- Subtraction (e.g. vegetal)
- Production of astringency
- Promotion of oxidation products
- Color

